
Lambda Calculus

Programming Languages

Haritz
Puerto-San-Roman

Univeristy of Malaga
haritzpuerto94@gmail.com

Felipe Sulser-Larraz
Univeristy of Malaga

felipesulser@gmail.com

ABSTRACT
This document is the report created to support the presen-
tation about λ calculus. In this document, we will proceed
to present untyped λ calculus in a simple way. Afterwards,
several examples are shown in order to show how reductions
are made. Finally several problems and their solutions are
presented in an incremental fashion.

With this document we do not wish to explain λ-calculus in
a deep and thorough way but in a more simple and exercise-
driven approach.

1. INTRODUCTION
λ calculus was invented by Church in 1928 and was first pub-
lished in 1932. It is a formal system designed to investigate
functions and recursion, i.e. the foundations of mathemat-
ics. The original system was shown to be logically inconsis-
tent in 1935 by Stephen Kleene and J. B. Rosser who devel-
oped the Kleene–Rosser paradox. In 1936 Church published
just the portion relevant to computation, what is now called
the untyped lambda calculus. In 1940, he also introduced
a computationally weaker, but logically consistent system,
known as the simply typed lambda calculus.

The syntax of λ calculus is very simple:
e ::= x | λx.e | ee

Being:

• x a variable

• λ x . e is a λ abstraction (function). x is the argument
and e is the body.

• ee is a λ application.

We call the set of all λ-terms Λ.

Example

Which of these expressions are right?

• λ (x.x)

• (λ(x. y)

• λx.(xy)

• (λx.x)y

The last two expressions are right.

Once we know its syntax, we are ready to learn its rules. We
will start with the beta rule.

1.1 Beta rule
This reduction describes the function application rule.

(λx.e1)e2− > e1[x/e2]
e2 is passed to the function.

Example
Assume sqr and 3 are defined:
(((λf.(λx.(f(f(x))))sqr)3)
= ((λx.(sqr(sqr(x)))3)
= (sqr(sqr 3))
= (sqr 9)
= 81
Example
(λx.(λz(xz)))y
= λz.(yz)

Example A currified function (λx.λy.xy)z λy.zy → this is
like currying in haskell!

λ-calculus uses static scoping:
Question:
Does (λx.x(λx.x))z equals to (λx.x(λy.y))z ?
Yes, both x’s are bound to a λ. x can be anything.

1.2 Alfa conversion:
This is simply renaming a bound variable.

λv.E → λw.E[v → w]
This is means: λx.x = λy.y

Example
λy.(λf.fx)y

a→ λz.(λf.fx)z
a→ λz.(λg.gx)z

1.3 Eta-Conversion
An η-conversion is adding or dropping of abstraction over a
function. Let’s see it with an example:
If x does not appear in f, then
(λ x. f x) g = f g
Extensive use of η-reduction can lead to Pointfree program-
ming

1.4 Pointfree Programming
It is very common for functional programmers to write func-
tions as a composition of other functions, never mentioning
the actual arguments they will be applied to. For example,
compare:

sum = foldr (+) 0

with:

sum’ xs = foldr (+) 0 xs

1.5 Conventions
Looking at λ terms can be very hard to decipher, so we will
omit outer parenthesis whenever possible and we will use
association to the left.

(λx.(λy.yx)) = λx.λy.yx

And instead of that, we will write:
λxy.yx

Let’s see a full example:
(λx.xy)(λz.z)w = (λz.z)yw = yw

1.6 Combinators
A λ-term M is a called a combinator if FV (M) = ∅. The
following λ-terms are examples of combinators.

• I = λx.x

• K = λxy.x

• S = λxyz.xz(yz)

• ω = λx.xx

• Ω = ωω

• Y = λf.(ω(λx.f(xx)))

1.7 Beta normal form
We say that a term λ is in β normal form if it cannot be
β-reduced. A term has a β normal form if it β reduces to a
term that has a β normal form.

I is in β-nf. Ω does not have a β-nf.

KIΩ not in β-nf but it has one, namely I.

1.8 Logical values, Tuples and numbers
Let’s define true and false values:

T = λtf.t
F = λtf.f

T is a function that takes 2 arguments and returns the first
one.
F is a function that takes 2 arguments and returns the last
one.

Let’s see an example of T and F
if T then e1 else e2 = T e1 e2 = (λtf.t) e1 e2 = e1
if F then e1 else e2 = F e1 e2 = (λtf.f) e1 e2 = e2

Now, let’s define AND, OR and NOT.
AND = λ xy . xyF
OR = λ xy . xTy
NOT = λ x . xFT

Let’s see some examples of these definitions:

Assume e1 = T
AND e1 e2 => e1 e2 F => T e2 F => e2
OR e1 e2 => e1 T e2 => T T e2 => T

NOT e1 => e1 F T => T F T => F

Assume e1 = F
AND e1e2 => e1 e2 F => F e2 F => F
OR e1 e2 => e1 T e2 => F T e2 => e2

NOT e1 => e1 F T => F F T = T

How can we represent a tuple?
pair = λxyb . b x y

fst = λp. p T
snd = λp. p F

Let’s see how it works:

fst (pair e1 e2) => (pair e1 e2) T => (λb . b e1 e2) T =>
T e1 e2 => e1

There are many ways to represent numbers using λ calculus.
We will use the following:

0 = λ f x . x
1 = λ f x . fx

2 = λ f x . f(fx)
n = λ f x . f...f(fx) There are n ’f’

Now let’s define the successor function:
SUCC := λ nfx.f (n f x)

Let’s see some examples:

SUCC 0 = SUCC (λ f x. x) = (λn f x. f (n f x)) (λf x. x)
= λf x . f ((λf x. x) f x)) = λ f x . f(x) = 1
SUCC 1 = SUCC (λfx.fx) = (λn f x. f (n f x)) (λf x.fx) =
λf x . f((λf x.fx) f x) = λf x.f (f x) = 2

Once we have the successor function we want the predecessor
function. In order to define it we need the auxiliary function
next.

next = λp . pair (snd p) (add (snd p) 1)
next (pair a b) = pair b (b+1)

It can be shown that by applying next to pair 0 0 exactly n
times, we obtain pair (n-1) n

PRED := λn . fst (nextn (pair 0 0))

PRED 1 = (λn . fst (nextn (pair 0 0))) 1 = fst (pair 0 1)
= 0

Later on, we will need another function related with num-
bers. This function is called zero?. It tells us if a number is
zero or not.

zero? = λnxy . n (λz.y) x

Let’s see that it does work.

Zero? 0 = (λnxy . n (λz.y) x) (λfx . x) = λxy. (λfx. x)
(λz.y) x = λxy. x = T
Zero? 1 = (λnxy . n (λz.y) x) (λfx . fx) = λxy. (λfx. fx)
(λz.y) x = λxy. (λz.y) x = λxy. y = F

2. FIXED POINTS
2.1 Theorem. Fixed points exists.
For every M ∈ Λ there exists X ∈ Λ such that M X = X,
that is X is a fixed point of M .

We claim that YM is a fixed point of M.

YM = (λx . M (xx))(λx . M (xx))
= M ((λx . M (xx))(λx . M (xx)))
= M (YM)

Let’s see an application.

add n m =

 m if n = 0

add(n− 1)(m+ 1) otherwise

ADD = λxy. (Zero? x) (y) (ADD (Pred x) (Succ y))

There is a problem here. In the definition of add we are
referencing add so let’s abstract out add.

ADD = λpxy. (Zero? x) (y) (p (Pred x) (Succ y)) ADD
Q = λpxy. (Zero? x) (y) (p (Pred x) (Succ y))
ADD is a fixed point of Q
ADD = YQ

Now, ADD is not used in its definition.

Let’s check its behaviour:

ADD n m = YQ n m = Q(YQ) n m = Q (ADD) n m =
(Zero? n) (m) (ADD (Pred n) (Succ m))

Now, let’s see a few more theorems.

2.2 Godel Numbering
There exists an effect enumeration of λ-terms. For M ∈ λ
we write #M to denote the Godel number of M . We write
[#M] to stand for the λ-term representing #M .

2.3 Another important theorem

For every λ-term F there is a λ-term X such that F [#X] =
X.
Proof
All recursive functions are λ-definable by the Church-Turing
Thesis. By the effectiveness of our numbering, there is a
term N such that:
N[#M] = [#[#M]]
Furthermore, there is a term A such that
A[#M][#N] = [#(M N)]

Now, let’s take W = λn. F(An (N n))

X = W[#W] = F(A [#W](N[#W])) = F(A[#W]([#[#M]]
)) = F([#(W[#W])]) = F([#X])

3. DECISION PROBLEM
Alonzo Church proved that there is no term that decides
whether two terms have the same normal form.

He reduced this problem to asking whether a given term
has a normal form, and then showed this problem can’t be
answered using a λ-term. We will only show this proof.

Theorem. There is no lambda term, M, such that

M n =

 0 if Godel number n has a βnf

1 otherwise

Proof
Let’s suppose there is such M.
Let’s define G = λ n. Zero?(M n) Ω I
As we shown before, there is an X such that:
G[#X] = X

Let’s suppose x has a β-nf.
M[#X] = 0 => G[#X] = Zero? (0) ΩI = Ω = X => X has
no β-nf.
We have reached a contradiction!
Let’s suppose x has no a β-nf.
M[#X] = 1 => G[#X] = Zero? (1) ΩI = I = X => X has
β-nf.
We have reached a contradiction!
We can conclude that there is no such M.

4. TURING COMPLETENESS
We will show the equivalence to µ-recursive functions.

Constant function: f(x1, ...xk) = n
Successor function: S(x) = f(x) = x+ 1

Projection function:P (i, k) = f(x1, ...xk) = xi

4.1 Operators
1. Composition operator

2. Primitive recursion

3. Minimalisation

For this demonstration I will assume that the reader knows
the concepts of the operators in the µ-recursive language.

If this is not the case, please read the µ-recursive functions
chapter from the book Automata Theory and Formal Lan-
guages.

Constant function is straightforward and we have already
given a definition of successor funtion.
And the Projection function?
Projection: f(x1, ..., xk) = xi
In lambda terms:
λx1, ..., xk.xi

4.2 Operators
Composition

Composition in λ calculus
In terms of lambda calculus:
λgh1h2...hmn1n2...nk.
g(h1 n1 n2...nk)(h2 n1....nk)...(hm n1 n2...nk)

Primitive recursion

Primitive Recursion in λ calculus
We will use the previously explained Y combinator.
λg h n1 n2...nk.
Y (λfm.iszero m(f n1 n2...nk) (g n1 n2...nk)(prec m)(f(prec m))))

Minimalisation

Minimalisation in λ calculus
Again, we’ll use the Y combinator.
λg n1 n2...nk.
(Y.(λh x.zero?(g x1 x2...xk x)x(h(succ x)))zero)

We have just proven that λ-calculus is at least as powerful
as µ recursive functions. In order to prove that it is turing
complete, we must show that λ-calculus is not more powerful
than µ recursive functions.

5. CONCLUSIONS
We have provided:

1. Syntax definition

2. Rules of derivation and conversion

3. Simple data structures and Church’s encoding

4. Recursion in Lambda Calculus

5. Decision Problem in Lambda Calculus

6. Equivalence for the Turing completeness in Lambda
Calculus

6. REFERENCES
[1] Gunther 2010, Lambda Calculus and the Decision

Problem

[2] Roger Hindley and Jonathan Seldin, Introduction to
Combinators and Lambda calculus

[3] Prof. Sungwoo Park (POSTECH), CSE-321
Programming Languages, Untyped Lambda Calculus

[4] Raul Rojas (FU Berlin), A Tutorial Introduction to the
Lambda Calculus

[5] Ramos-Jimenez, G. (UMA) Automata Theory and Formal
Languages

